Learning feature-projection based classifiers

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Learning feature-projection based classifiers

This paper aims at designing better performing feature-projection based classification algorithms and presents two new such algorithms. These algorithms are batch supervised learning algorithms and represent induced classification knowledge as feature intervals. In both algorithms, each feature participates in the classification by giving real-valued votes to classes. The prediction for an unse...

متن کامل

Random Projection Ensemble Classifiers

We introduce a novel ensemble model based on random projections. The contribution of using random projections is two-fold. First, the randomness provides the diversity which is required for the construction of an ensemble model. Second, random projections embed the original set into a space of lower dimension while preserving the dataset’s geometrical structure to a given distortion. This reduc...

متن کامل

Projection-based measure for efficient feature selection

The attribute selection techniques for supervised learning, used in the preprocessing phase to emphasize the most relevant attributes, allow making models of classification simpler and easy to understand. Depending on the method to apply: starting point, search organization, evaluation strategy, and the stopping criterion, there is an added cost to the classification algorithm that we are going...

متن کامل

Feature-Cost Sensitive Learning with Submodular Trees of Classifiers

During the past decade, machine learning algorithms have become commonplace in large-scale real-world industrial applications. In these settings, the computation time to train and test machine learning algorithms is a key consideration. At training-time the algorithms must scale to very large data set sizes. At testing-time, the cost of feature extraction can dominate the CPU runtime. Recently,...

متن کامل

Using Feature Conjunctions Across Examples for Learning Pairwise Classifiers

We propose a kernel method for using combinations of features across example pairs in learning pairwise classifiers. Identifying two instances in the same class is an important technique in duplicate detection, entity matching, and other clustering problems. However, it is a difficult problem when instances have few discriminative features. One typical example is to check whether two abbreviate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Expert Systems with Applications

سال: 2012

ISSN: 0957-4174

DOI: 10.1016/j.eswa.2011.09.133